
Нейросеть моделирует среднюю температуру в экваториальной зоне Тихого океана в перспективе. При Эль-Ниньо экваториальная часть становится теплее обычного. Также существует обратный процесс со снижением температуры в океане — Ла-Нинья. Такой сменный цикл происходит каждые 27 лет. Эти колебания оказывают значительное влияние на погоду во многих странах мира и могут повышать риск возникновения пожаров, засух, наводнений и неурожаев.
Научная группа университета обучила нейросети на массиве из тысяч температурных карт с синтетическими и реальными данными, собранными с 1800 года по настоящее время. Помимо стандартных методов машинного обучения для прогноза подобных явлений, ML-специалисты тестируют в обучении архитектуру Autoformer. Благодаря этому можно качественно обрабатывать последовательность температурных карт. Для предобработки датасетов ученые использовали сервис ML-разработки Yandex DataSphere, в котором есть все необходимые инструменты и динамически масштабируемые облачные ресурсы для полного цикла разработки машинного обучения.
«Облачные технологии помогают эффективнее проводить эксперименты в научной среде. В таких проектах, как исследование Эль-Ниньо, важен быстрый и гибкий доступ к сервисам для тестирования разных моделей машинного обучения. Каждый такой тест с новой архитектурой помогает как можно раньше и точнее предсказывать феномен», — рассказала директор по национальным стратегическим проектам Yandex Cloud Анна Лемякина.«Проблемы глобального изменения климата становятся все актуальнее. Страшно даже не столько само потепление, сколько неизбежная «разбалансировка» климата на планете. Эффект Эль-Ниньо играет важнейшую роль в возникновении глобальных погодных и климатических флуктуаций, приводящих, например, к массовым неурожаям, и поэтому его прогнозирование особенно важно в текущих условиях усиливающейся климатической «разбалансировки», — отметил профессор-исследователь департамента больших данных и информационного поиска факультета компьютерных наук НИУ ВШЭ Дмитрий Ветров.